Friday 12 October 2012

COMPUTER QUIZ

COMPUTER QUIZ
(To see correct answers, move mouse over options, answer will be highlighted)
1. Which of the following communication mode supports data transmission in
    both directions at the same time?   
  
    a) Simplex
    b) Duplex
    c) Half simplex
    d) Full duplex
    e) Multiplex

2. Which of the following transmission techniques let computer to
    alternatively send and receive data?

    a) Duplex
    b) Simplex
    c) Half duplex
    d) Full duplex
    e) None of above

3.  Modulation is the process of :
     a) Echoing every character that is received
     b) Converting digital signals to analog signals
     c) Converting analog signals to digital signals
     d) Sending a file from one computer to another computer
     e) None of above

4. A modem performs-
    a) Modulation
    b) Demodulation
    c) Data compression
    d) Both (a) & (b) 
    e) All (a), (b) & (c)

5. Which of the following keyboard format is most commonly used?
    a) TWRITER
    b) SPLITTER
    c) QWERTY
    d) Dvorak
    e) None of the above

6. The function of key F4 in a word processing application is -
    a) to repeat the last action
    b) to open a saved document
    c) to delete the highlighted text
    d) to open context menu of highlighted text
    e) None of above

7. Laser printer is an example of -
    a) Impact printer
    b) Inkjet printer
    c) Non-Impact printer
    d) Dot-matrix printer
    e) None of above

8. which of the following is a term related with scanners?
    a) Laser
    b) TWAIN
    c) QWERTY
    d) Media
    e) Cartridge

9. The resolution of a monitor depends on:
    a) Dot pitch of the monitor
    b) Number of bits representing a pixel
    c) Number of pixels that can be displayed
    d) Both (a) & (b)
    e) All (a), (b) & (c)

10. What does the term ISO stands for?
    a) Information System Output
    b) International Standards Organization
    c) International Systems organization
    d) Integrated Services Organization
    e) None of above

Tuesday 9 October 2012

HISTORY OF COMPUTER

What is a Computer



 

In its most basic form a computer is any device which aids humans in performing various kinds of computations or calculations. In that respect the earliest computer was the abacus, used to perform basic arithmetic operations.
Every computer supports some form of input, processing, and output. This is less obvious on a primitive device such as the abacus where input, output and processing are simply the act of moving the pebbles into new positions, seeing the changed positions, and counting. Regardless, this is what computing is all about, in a nutshell. We input information, the computer processes it according to its basic logic or the program currently running, and outputs the results.
Modern computers do this electronically, which enables them to perform a vastly greater number of calculations or computations in less time. Despite the fact that we currently use computers to process images, sound, text and other non-numerical forms of data, all of it depends on nothing more than basic numerical calculations. Graphics, sound etc. are merely abstractions of the numbers being crunched within the machine; in digital computers these are the ones and zeros, representing electrical on and off states, and endless combinations of those. In other words every image, every sound, and every word have a corresponding binary code.
While abacus may have technically been the first computer most people today associate the word “computer” with electronic computers which were invented in the last century, and have evolved into modern computers we know of today.
ENIAC

First Generation Computers (1940s – 1950s)

First electronic computers used vacuum tubes, and they were huge and complex. The first general purpose electronic computer was the ENIAC (Electronic Numerical Integrator And Computer). It was digital, although it didn’t operate with binary code, and was reprogrammable to solve a complete range of computing problems. It was programmed using plugboards and switches, supporting input from an IBM card reader, and output to an IBM card punch. It took up 167 square meters, weighed 27 tons, and consuming 150 kilowatts of power. It used thousands of vacuum tubes, crystal diodes, relays, resistors, and capacitors.
The first non-general purpose computer was ABC (Atanasoff–Berry Computer), and other similar computers of this era included german Z3, ten British Colossus computers, LEO, Harvard Mark I, and UNIVAC.

IBM 1401

Second Generation Computers (1955 – 1960)

The second generation of computers came about thanks to the invention of the transistor, which then started replacing vacuum tubes in computer design. Transistor computers consumed far less power, produced far less heat, and were much smaller compared to the first generation, albeit still big by today’s standards.
The first transistor computer was created at the University of Manchester in 1953. The most popular of transistor computers was IBM 1401. IBM also created the first disk drive in 1956, the IBM 350 RAMAC.

Third Generation Computers (1960s)


IBM System/360
The invention of the integrated circuits (ICs), also known as microchips, paved the way for computers as we know them today. Making circuits out of single pieces of silicon, which is a semiconductor, allowed them to be much smaller and more practical to produce. This also started the ongoing process of integrating an ever larger number of transistors onto a single microchip. During the sixties microchips started making their way into computers, but the process was gradual, and second generation of computers still held on.
First appeared minicomputers, first of which were still based on non-microchip transistors, and later versions of which were hybrids, being based on both transistors and microchips, such as IBM’s System/360. They were much smaller, and cheaper than first and second generation of computers, also known as mainframes. Minicomputers can be seen as a bridge between mainframes and microcomputers, which came later as the proliferation of microchips in computers grew.

Fourth Generation Computers (1971 – present)

First microchips-based central processing units consisted of multiple microchips for different CPU components. The drive for ever greater integration and miniaturization led towards single-chip CPUs, where all of the necessary CPU components were put onto a single microchip, called a microprocessor. The first single-chip CPU, or a microprocessor, was Intel 4004.
The advent of the microprocessor spawned the evolution of the microcomputers, the kind that would eventually become personal computers that we are familiar with today.

First Generation of Microcomputers (1971 – 1976)

Altair 8800
First microcomputers were a weird bunch. They often came in kits, and many were essentially just boxes with lights and switches, usable only to engineers and hobbyists whom could understand binary code. Some, however, did come with a keyboard and/or a monitor, bearing somewhat more resemblance to modern computers.
It is arguable which of the early microcomputers could be called a first. CTC Datapoint 2200 is one candidate, although it actually didn’t contain a microprocessor (being based on a multi-chip CPU design instead), and wasn’t meant to be a standalone computer, but merely a terminal for the mainframes. The reason some might consider it a first microcomputer is because it could be used as a de-facto standalone computer, it was small enough, and its multi-chip CPU architecture actually became a basis for the x86 architecture later used in IBM PC and its descendants. Plus, it even came with a keyboard and a monitor, an exception in those days.
However, if we are looking for the first microcomputer that came with a proper microprocessor, was meant to be a standalone computer, and didn’t come as a kit then it would be Micral N, which used Intel 8008 SAmicroprocessor.
Popular early microcomputers which did come in kits include MOS Technology KIM-1, Altair 8800, and Apple I. Altair 8800 in particular spawned a large following among the hobbyists, and is considered the spark that started the microcomputer revolution, as these hobbyists went on to found companies centered around personal computing, such as Microsoft, and Apple.

Second Generation Microcomputers (1977 – present)


Commodore PET2001 (Image by Tomislav Medak licensed under CC-BY-SA).
As microcomputers continued to evolve they became easier to operate, making them accessible to a larger audience. They typically came with a keyboard and a monitor, or could be easily connected to a TV, and they supported visual representation of text and numbers on the screen.
In other words, lights and switches were replaced by screens and keyboards, and the necessity to understand binary code was diminished as they increasingly came with programs that could be used by issuing more easily understandable commands. Famous early examples of such computers include Commodore PET, Apple II, and in the 80s the IBM PC.
The nature of the underlying electronic components didn’t change between these computers and modern computers we know of today, but what did change was the number of circuits that could be put onto a single microchip. Intel’s co-founder Gordon Moore predicted the doubling of the number of transistor on a single chip every two years, which became known as “Moore’s Law”, and this trend has roughly held for over 30 years thanks to advancing manufacturing processes and microprocessor designs.
The consequence was a predictable exponential increase in processing power that could be put into a smaller package, which had a direct effect on the possible form factors as well as applications of modern computers, which is what most of the forthcoming paradigm shifting innovations in computing were about.

Graphical User Interface (GUI)

Macintosh 128k (Image by All About Apple museum licensed under CC-BY-SA-2.5-it)
Possibly the most significant of those shifts was the invention of the graphical user interface, and the mouse as a way of controlling it. Doug Engelbart and his team at the Stanford Research Lab developed the first mouse, and a graphical user interface, demonstrated in 1968. They were just a few years short of the beginning of the personal computer revolution sparked by the Altair 8800 so their idea didn’t take hold.
Instead it was picked up and improved upon by researchers at the Xerox PARC research center, which in 1973 developed Xerox Alto, the first computer with a mouse-driven GUI. It never became a commercial product, however, as Xerox management wasn’t ready to dive into the computer market and didn’t see the potential of what they had early enough.
It took Steve Jobs negotiating a stocks deal with Xerox in exchange for a tour of their research center to finally bring the user friendly graphical user interface, as well as the mouse, to the masses. Steve Jobs was shown what Xerox PARC team had developed, and directed Apple to improve upon it. In 1984 Apple introduced the Macintosh, the first mass-market computer with a graphical user interface and a mouse.
Microsoft later caught on and produced Windows, and the historic competition between the two companies started, resulting in improvements to the graphical user interface to this day.
Meanwhile IBM was dominating the PC market with their IBM PC, and Microsoft was riding on their coat tails by being the one to produce and sell the operating system for the IBM PC known as “DOS” or “Disk Operating System”. Macintosh, with its graphical user interface, was meant to dislodge IBM’s dominance, but Microsoft made this more difficult with their PC-compatible Windows operating system with its own GUI.

Portable Computers

Powerbook 150 (Image by Dana Sibera licensed under CC-BY-SA.)
As it turned out the idea of a laptop-like portable computer existed even before it was possible to create one, and it was developed at Xerox PARC by Alan Kay whom called it the Dynabook and intended it for children. The first portable computer that was created was the Xerox Notetaker, but only 10 were produced.
The first laptop that was commercialized was Osborne 1 in 1981, with a small 5″ CRT monitor and a keyboard that sits inside of the lid when closed. It ran CP/M (the OS that Microsoft bought and based DOS on). Later portable computers included Bondwell 2 released in 1985, also running CP/M, which was among the first with a hinge-mounted LCD display. Compaq Portable was the first IBM PC compatible computer, and it ran MS-DOS, but was less portable than Bondwell 2. Other examples of early portable computers included Epson HX-20, GRiD compass, Dulmont Magnum, Kyotronic 85, Commodore SX-64, IBM PC Convertible, Toshiba T1100, T1000, and T1200 etc.
The first portable computers which resemble modern laptops in features were Apple’s Powerbooks, which first introduced a built-in trackball, and later a trackpad and optional color LCD screens. IBM’s ThinkPad was largely inspired by Powerbook’s design, and the evolution of the two led to laptops and notebook computers as we know them. Powerbooks were eventually replaced by modern MacBook Pro’s.
Of course, much of the evolution of portable computers was enabled by the evolution of microprocessors, LCD displays, battery technology and so on. This evolution ultimately allowed computers even smaller and more portable than laptops, such as PDAs, tablets, and smartphones.
                    


                                                                          
                              

Sunday 5 August 2012

MCA WHOLE SYLLABUS

MCA WHOLE SYLLABUS


First semesterComputer programming 'C' Language
digital System, computer organiation & Architecture
Discrete Mathematics
Basic web development(internet, HTML, CSS, Multimedia basic)
Financial management & accounting
Second semester
OOPs Using C++
Database Management System(DBMS and Oracle)
Data structure using C
System Analysis & Design (SAD)
Operation Systems with Unix
Third semester
Software engineering
computer graphics
system programing
statistical & Numerical Methods using C++
computer Networks
Fourth semester
Management information systems(MIS)
Advanced Database systems
Java programing
computer based optimization methodsa
analysis & design of algorithms
Fifth semester
Dot net technologies
theory of computer sience
object oriented analysis & Design
software project management & quality assuarance
advanced operation system(Distributed systems)
Sixth semester
Digital image processing
Internet workign with TCP/IP
Data mining
project

Monday 16 July 2012

UPDATE YOUR HARDWARE RESUME PROFILE



                                                        RESUME

NAMEXXXXXXXXXXXXX
Local Add.Xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
Mob.9648XXXXXXXXXXXX

Objective

Aspire to serve a reputed organization with best of my professional skill as a Hardware Engineer.


Personal Summary

  • Expert in system installation, configuration, administration, and integration.
  • Analytical and technical expertise.
  • Expert in network operations.
  • Creative, curious, analytical, and detail-oriented.
  • Interactive ability and target centric


Technical Skills

  • Operating Systems: Windows9X, Windows2000, Windows ME, Windows XP, Windows Vista, Linux, Unix, MS DOS.
  • Hardware testing Tools: Multi meter, cable tester, Card tester, Soldering de-soldering .
  • Application software Photoshop, Adobe reader, Winrar, DVD Convertor, Nero.
  • Office Package: Microsoft Word, Microsoft Excel, Microsoft Access, Microsoft PowerPoint, Microsoft Outlook Express.
  • Assembling and reassembling of computer peripherals


CMC Academy, 10/2011 - Present
  

Hardware Engineer.
  • Conduct research, designing and develop, test, and supervise the installation of computer hardware.
  • Install chips, circuit boards, systems, modems, keyboards, and printers.
  • Design a variety of programs through computer.
  • Perform the communications link between organization and customers.
  • Work as an association looking into the hardware, software, training and standardization of computer systems.
  • Attend meetings, seminars and conferences and take statewide tours.
  • Maintain updated inventory of all hardware and software.
  • Make coordination for installing and upgrading the current equipments and software.
  • Maintain a standard configuration of equipment.
  • Handled the management of hardware stock and projects.
  • Identified the management position, duties and responsibilities.
  • Looked after physical and investigative processes, including technical support.
  • Accomplished the job of data recovery and system administration.


General Education

  • Pursuing B.Sc. from xxxxxxxxxxxxxxxxxx
  • High School from xxxxxxxxxxxxxxxxxxxx
  • Intermediate from xxxxxxxxxxxxxxxxxxxx
  • Tech(Hardware& Networking) from CMC Academy
  • Specialization in Monitor, and printer


Permanent address


xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Pin.23xxxxxxxxxxx

Friday 13 July 2012

Computer Shortcuts


Computer Shortcuts

Download all computer Shortcuts

Sunday 8 July 2012

CHANGE YOUR PROXY


CHANGE YOUR PROXY 


Use PD Proxy & Multi Proxy

1.PD Proxy





2.MULTI Proxy


+  
http://www.multiproxy.org/mproxy12.zip 




DNS Virus


DNS VIRUS




Be Aware Guys 
Protect yourself from DNS Virus otherwise you will loose your net connection


To check your system whether it's infected by dns virus or not visit:-


http://www.dns-ok.us/
http://www.dcwg.org

The whole world will be affected by DNS Virus.DNS Virus will attack on tomorrow i.e 9th July 2012.
Approximately 10lakhs systems are affected by this Virus by which they are loosing their DNS.






Friday 25 May 2012

FULL FORMS OF HARDWARE


* FULL  FORMS*

§       RIM
§          Read Interrupt Mask
§       PCMCIA
§          Personal computer memory card
    International architecture
§       MPEG
§          Motion Pictures Experts Group
§       USB
§          Universal Serial Bus
§       LAN
§          Local Area Network
§       UTP
§          Unshielded Twisted Pair
§       STP
§          Shielded Twisted Pair
§       ALU
§          Arithmetic And Logic Unit
§       CU
§          Control unit
§       FSB
§          Front Side Bus
§       CISC
§          Complex Instruction Set 
    Computing
§       RISC
§          Reduced Instruction Set
    Computing
§       AMD
§          Advanced Micro Devices
§       CPU
§          Central Processing Unit
§       BSB
§          Back Side Bus
§       PGA
§          Pin Grid Array
§       SPGA
§          Staggered Pin Grid Array
§       RAM
§          Random access memory
§       ROM
§          Read Only Memory
§       PROM
§          Programmable read only memory
§       EPROM
§          Erasable Programmable Read
    only Memory


§       EEPROM
§          Electrically Erasable
    Programmable Read only
    Memory
§       SRAM
§           Static Random Access Memory
§       DRAM
§           Dynamic Random Access Memory
§       EDODRAM
§           Extended Data Out (Dram)
§       SDRAM
§          Synchronous (Dram)
§       DDRSDRAM
§          Double Data Rate (Sdram)
§       RDRAM
§          Ram Bus Dynamic (Ram)
§       SGRAM
§          Synchronous Graphics (Ram)
§       VRAM
§          Video Random Access Memory
§       FPMDRAM
§          Fast Page Mode (Dram)
§       QDRSDRAM
§          Quad Data Rate (Sdram)
§       HDD
§          Hard Disk Drive
§       DAT
§          Digital Audio Tape
§       ZIP
§           
§       SIMM
§           Single Inline Memory Module
§       DIMM
§           Dual Inline Memory Module
§       SODIMM
§           Small Outline (Dimm)
§       RIMM
§           Ram Bus Inline Memory Module
§       BIOS
§           Basic Input Output System
§       AT
§           Advanced Technology
§       ATX
§           Advanced Technology Extended
§       LPX
§           Low Profile Extended
§       NLX
§           New Low Profile Extended
§       ITX
§           
§       BTX
§           Balanced Technology Extended
§       HP
§           Hewlett Packard
§       PCI
§           Peripheral Component Interconnect
§       PCI X
§           Peripheral Component Interconnect
      Extended
§       PCI-E
§           Peripheral Component   
     Interconnect Express
§       ECC
§           Error Correction Code
§       AGP
§           Accelerated Graphics Port
§       AMI
§           American Mega Trends
     Incorporation
§       CMOS
§           Complementary Metal Oxide
     Semiconductor.
§       VESA
§           Video Electronics Standards
     Association.
§       ISA
§           Industrial Standard Architecture
§       EISA
§           Extended Industrial Standard
     Architecture
§       MCA
§           Micro Channel Architecture
§       SFX
§           Small from factor extended
§       WTX
§           Workstation Technology
     Extended
§       SMPS
§           Switch Mode Power Supply
§       PSF
§           Power Supply Fan
§       UPS
§           Uninterrupted Power Supply
§       DMM
§           Digital Multimeter
§       ICs
§           Integrated Circuits
§       FDD
§           Floppy Disk Drive
§       IDE
§           Integrated Drive Electronics
§           Integrated Development
     Environment
§       SATA
§           Serial Advanced Technology
     Attachment
§       PATA
§           Parallel Advanced Technology
     Attachment
§       ATA
§           Advanced Technology
     Attachment
§       EIDE
§           
§       RAID
§           Redundant Array Of Inexpensive
     Disk
§       HDA
§           Head Disk Assembly
§       FAT
§           File Allocation Table
§       NTFS
§           New Technology File System
§       EFS
§           Extended File System
§       MBR
§           Master Boot Record
§       ATAPI
§           
§       CD
§           Compact Disc
§       CD-ROM
§           CD Read Only Memory
§       CD-R
§           Compact Disc Recordable
§       CD-RW
§           CD Rewritable
§       DVD
§           Digital Versatile Disk
§       DVD
§           Digital Video Disk
§       DVD-VR
§           (DVD) Video Recording
§       HD-DVD
§           High Definition (DVD)
§       I/O
§           Input—output
§       EPP
§           Enhanced Parallel Port Mode
§       ECP
§           Enhanced Capability Port Mode
§       SPP
§           Standard Parallel Port
§       HTML
§           Hypertext Markup Language
§       ISDN
§           Integrated Services Digital Network
§       DSL
§           Digital Subscriber Line
§       CMTS
§           Cable Modem Terminal System
§       ARQ
§           Automatic Repeat Request
§       LAPM
§           Link access procedure for     
     Microcom
§       MNP
§           Microcom Network Protocol
§       PMT
§           Photomultiplier Tube
§       CCD
§           Charge Coupled Device
§       ACD
§           Analog Digital Converter
§       SMART
§           Self Monitoring Analysis And
     Reporting Technology
§       SAS
§           Serial attached system
§       SE
§           Single ended
§       LVD
§           Low Voltage Differential
§       HVD
§           High Voltage Differential
§       CRT
§           Cathode ray tube
§       LCD
§           Liquid Crystal Display
§       TFT
§           Thin Film Transistor
§       SVGA
§           Super video graphics array
§       SXGA
§           Super Extended Graphics Array
§       UXGA
§           Ultra (XGA)
§       HCL
§           Hardware Compatibility List
§       ISP
§           Internet Service Provider
§       BSNL
§           Bharat Sanchar Nigam Limited
§       VSNL
§           Videsh Sanchar Nigam Limited
§       AMI
§           American Megatrends Inc.
§       PLCC
§           Plastic Leaded Chip Carrier
§       POST
§           Power On Self Test
§       CAS
§           Column Address Strobe
§       PNP
§           Plug And Play
§       PGA
§           Primary graphics adapter
§       CGA
§           Colour graphics adapter
§       CGA
§           Colour graphics adapter
§       UXGA
§           Ultra Extended Graphics Array
§       VGA
§           Vedio Graphics Array
§       MIDI
§           Musical Instrument Digital
     Interface




§       LED
§          Light Emitting Diode
§       BJT
§          Bycolor Junction Transistor
§       CRT
§          Cathode  Ray Tube
§       LCD
§          Liquid Crystal Display
§       TFT
§          Thin Film Transistor
§       FSB
§          Front Side Bus
§       PDA
§          Personal Digital Interface
§       SECC
§          Single Edge Contact Catridge
§       SEPP
§          Single Edge Processor Package
§       FPU
§          Floating Point Unit
§       LGA
§          Land Grid Array
§       ZIF
§          Zero Insertion Force
§       DMA
§          Direct Memory Access
§       DSL
§          Digital Subscriber Line
§       RJ
§          Regulated Jack
§       OTP
§          One Time Programmable
§       ECC
§          Error Correction Code
§       AMR
§          Audio/Modem Riser (Slot)
§       RTCRAM
§          Real Time Clock Ram
§       DIP
§          Dual Inline Package
§       EPP
§          Enhance Parallel Port
§       ECP
§          Extended Capabilities Port
§       VRM
§          Voltage Regulator Module
§       VID
§          Voltage Indentification
§       OEM
§          Original Equipment Manufacturer
§       UDMA
§          Ultra Direct Memory Access
§       LPT
§          Line Printer Terminal
§       DBA
§           
§       EMI
§          Electromagnetic Interference
§       RFI
§          Radio Frequency Interference
§       PWM
§          Pulse with modulator
§       PIO
§          Programmed Input Output
§       ATAPI
§          Advance Technology Attachment
     Packet Interface
§       ANSI
§          American National Standard
    Institute
§       HAD
§          Head Disk Assembly
§       FAT
§          File Allocation Table
§       NTFS
§          New Technology File System
§       EXT
§          Extended File System
§       AOD
§          Advanced optical Disc (HD-DVD)
§       DAC
§          Digital to Analog Converter
§       CLV
§          Constant Linear Velocity
§       UART
§          Universal Asynchronous Receiver
    Transmitter


Copyright 2012 | Powered by ABHIJEET VISHEN